55 research outputs found

    Invariant Tensors Formulae via Chord Diagrams

    Get PDF
    We provide an explicit algorithm to calculate invariant tensors for the adjoint representation of the simple Lie algebra sl(n)sl(n), as well as arbitrary representation in terms of roots. We also obtain explicit formulae for the adjoint representations of the orthogonal and symplectic Lie algebras so(n)so(n) and sp(n)sp(n).Comment: 18 pages, 8 figures. To appear in a special issue of Journal of Mathematical Science

    Obtainment of internal labelling operators as broken Casimir operators by means of contractions related to reduction chains in semisimple Lie algebras

    Get PDF
    We show that the In\"on\"u-Wigner contraction naturally associated to a reduction chain ss\frak{s}\supset \frak{s}^{\prime} of semisimple Lie algebras induces a decomposition of the Casimir operators into homogeneous polynomials, the terms of which can be used to obtain additional mutually commuting missing label operators for this reduction. The adjunction of these scalars that are no more invariants of the contraction allow to solve the missing label problem for those reductions where the contraction provides an insufficient number of labelling operators

    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients

    Full text link
    Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach

    Lowest dimensional example on non-universality of generalized In\"on\"u-Wigner contractions

    Get PDF
    We prove that there exists just one pair of complex four-dimensional Lie algebras such that a well-defined contraction among them is not equivalent to a generalized IW-contraction (or to a one-parametric subgroup degeneration in conventional algebraic terms). Over the field of real numbers, this pair of algebras is split into two pairs with the same contracted algebra. The example we constructed demonstrates that even in the dimension four generalized IW-contractions are not sufficient for realizing all possible contractions, and this is the lowest dimension in which generalized IW-contractions are not universal. Moreover, this is also the first example of nonexistence of generalized IW-contraction for the case when the contracted algebra is not characteristically nilpotent and, therefore, admits nontrivial diagonal derivations. The lower bound (equal to three) of nonnegative integer parameter exponents which are sufficient to realize all generalized IW-contractions of four-dimensional Lie algebras is also found.Comment: 15 pages, extended versio

    Contractions of Low-Dimensional Lie Algebras

    Full text link
    Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite invariant and semi-invariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for the both complex and real Lie algebras of dimensions not greater than four are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and co-levels of low-dimensional Lie algebras are discussed in detail. Properties of multi-parametric and repeated contractions are also investigated.Comment: 47 pages, 4 figures, revised versio

    Non-geometric flux vacua, S-duality and algebraic geometry

    Get PDF
    The four dimensional gauged supergravities descending from non-geometric string compactifications involve a wide class of flux objects which are needed to make the theory invariant under duality transformations at the effective level. Additionally, complex algebraic conditions involving these fluxes arise from Bianchi identities and tadpole cancellations in the effective theory. In this work we study a simple T and S-duality invariant gauged supergravity, that of a type IIB string compactified on a T6/(Z2xZ2)T^6/(Z_2 x Z_2) orientifold with O3/O7-planes. We build upon the results of recent works and develop a systematic method for solving all the flux constraints based on the algebra structure underlying the fluxes. Starting with the T-duality invariant supergravity, we find that the fluxes needed to restore S-duality can be simply implemented as linear deformations of the gauge subalgebra by an element of its second cohomology class. Algebraic geometry techniques are extensively used to solve these constraints and supersymmetric vacua, centering our attention on Minkowski solutions, become systematically computable and are also provided to clarify the methods.Comment: 47 pages, 10 tables, typos corrected, Accepted for Publication in Journal of High Energy Physic

    Reachability of Uncertain Linear Systems Using Zonotopes

    Full text link
    International audienceWe present a method for the computation of reachable sets of uncertain linear systems. The main innovation of the method consists in the use of zonotopes for reachable set representation. Zonotopes are special polytopes with several interesting properties : they can be encoded efficiently, they are closed under linear transformations and Minkowski sum. The resulting method has been used to treat several examples and has shown great performances for high dimensional systems. An extension of the method for the verification of piecewise linear hybrid systems is proposed

    Approximating Switched Continuous Systems By Rectangular Automata

    No full text
    An approximation procedure is presented for a class of hybrid systems in which switching occurs only when the continuous state trajectory crosses thresholds defined by a rectangular partitioning of the state space. The result of the approximation are rectangular automata, a class of hybrid automata for which a numerically robust approximative analysis algorithm exists. Thus, the approximation procedure can be applied when we are interested in the reachability set of a switched continuous system for which a direct analysis is infeasible. The approach is illustrated by application to a simple physical example. As an extension, an algorithm is presented to adjust the accuracy of the approximation to the continuous dynamics by choosing a state space partitioning according to the variation of the vector field. 1 Introduction The problem behind the contribution of this paper is the analysis of systems with continuous dynamics which can switch when the continuous state trajectory crosses re..
    corecore